Derivati: Dallime mes rishikimesh
imported>Olsi Nuk ka përmbledhje të përpunimit |
(Pa ndryshime)
|
Versioni aktual i datës 22 nëntor 2020 03:33

Derivati i një funksioni me ndryshore reale mat ndjeshmërinë e një sasie për të ndryshuar (një vlerë funksioni ose ndryshorja e varur), që përcaktohet nga një tjetër sasi (ndryshorja e pavarur). Derivatet janë një mjet themelor në analizën matematike. Për shembull, derivati i një pozicioni të një objekti që lëviz, në lidhje me kohën, është shpejtësia e atij objekti: kjo mat se sa shpejt ndryshon pozicioni i objektit me kalimin e kohës.
Derivati i një funksioni me një ndryshore të vetme në një pikë të caktuar, kur ekziston, është pjerrësia e tangentes ndaj grafikut të funksionit në atë pikë. Tangentja është përafrimi më i mirë linear i funskionit pranë asaj pike të dhënë. Për këtë arsye, derivati shpesh përshkruhet si "shkalla e ndryshimit të çastit", raporti i ndryshimit të çastit në ndryshoren e varur me ndryshimin e çastit në ndryshoren e pavarur.
Derivatet mund të përgjithësohen edhe për funksionet me disa ndryshore reale. Në këtë përgjithësim, derivati interpretohet si një transformim linear grafiku i të cilit është përafrimi më i mirë linear me grafikun e funksionit origjinal. Matrica jakobiane është matrica që përfaqëson këtë transformim linear në lidhje me bazën e dhënë nga zgjedhja e ndryshoreve të pavarura dhe të varura. Mund të llogaritet në kushtet e derivateve të pjesshme në lidhje me ndryshoret e pavarura. Për një funksion me vlera reale me disa ndryshore, matrica jakobiane reduktohet në vektorin gradient.
Procesi i gjetjes së derivatit quhet diferencim. Procesi i anasjelltë quhet antidiferencim. Teorema themelore e analizës matematike thotë se antidiferencimi është i njëjtë me integrimin. Diferencimi dhe integrimi përbëjnë dy veprime themelore në analizën me funksione me një ndryshore.[1]
Diferencimi dhe derivati
Diferencimi është veprimi i llogaritjes së derivatit. Derivati i një funksioni Stampa:Math të një ndryshoreje Stampa:Math është një matje e shkallës në të cilën vlera e funksionit ndryshon në lidhje me ndryshimin e ndryshores. Quhet derivati i Stampa:Math në lidhje me Stampa:Math. Nëse Stampa:Math dhe Stampa:Math janë numra realë, dhe nëse grafiku i Stampa:Math ndërtohet sipas Stampa:Math, derivati është pjerrësia e këtij grafiku në çdo pikë.
Rasti më i thjeshtë, përveç rastit të funksioni konstant, është kur Stampa:Math është një funksion linear i Stampa:Math, që do të thotë që grafiku i Stampa:Math pjesëtuar me Stampa:Math është një drejtëz. Në këtë rast, Stampa:Math, për numrat realë Stampa:Math dhe Stampa:Math, dhe pjerrësia Stampa:Math jepet nga
ku simboli Stampa:Math është shkurtim për shprehjen "ndryshimi në." Kjo formulë është e vërtetë sespe
Prandaj, mqs
do të kemi
Kjo jep një vlerë ekzakte për pjerrësinë e një drejtëze. Nëse funksioni Stampa:Math nuk është linear (funksioni i tij nuk është drejtëz), megjithatë, atëherë ndryshimi në Stampa:Math përmbi ndryshimin në Stampa:Math ndryshon: diferencimi është një metodë për të gjetur një vlerë ekzakte për këtë shkallë ndryshimi për çdo vlerë të dhënë të Stampa:Math.
Ideja, e ilustruar në figurat 1,2 dhe 3, është llogaritja e shkallës së ndryshimit si vlerë limite të raportit të diferencave Stampa:Math kur Stampa:Math bëhet pambarimisht i vogël.
Simboli
Për derivatin përdoren zakonisht dy simbole të ndryshme, njëri që rrjedh nga Lajbnici dhe tjetri nga Lagranzhi.
Në simbolin e Laibnicit, një ndryshim pambarimisht i vogël i Stampa:Math shënohet me Stampa:Math, dhe derivati i Stampa:Math në lidhje me Stampa:Math shkruhet
(Shprehja e mësipërme lexohet si "derivati i y në lidhje me x", "d y ndaj d x", ose "d y përmbi d x".)
Në simbolin e Lagranzhit, derivati në lidhje me Stampa:Math i një funksioni Stampa:Math shënohet Stampa:Math (lexohet si "f prim x") ose Stampa:Math (lexohet si "f prim x i x-it"), në rast paqartësie në lidhje me ndryshoren që derivohet. Simboli i Lagranzhit i atribuohet ndonjëhere gabimisht Njutonit.
Shënime
- ↑ Analiza diferenciale, siç diskutohet dhe në këtë artikull, është një disiplinë matematikore e punuar mjaft mirë, për të cilën ka shumë burime. Pothuajse i gjithë materiali i këtij artikulli mund të gjendet në Apostol 1967, Apostol 1969, and Spivak 1994.