Skeda:Birthdaymatch.svg

Nga testwiki
Kërceni tek navigimi Kërceni tek kërkimi
Skedari origjinal (skedë SVG, fillimisht 720 × 540 pixel, madhësia e skedës: 291 KB)

Kjo skedë është nga Wikimedia Commons dhe mund të përdoret nga projektet e tjera. Përshkrimi në faqen përshkruese të skedës është treguar më poshtë.

Përmbledhje

Përshkrimi
English: In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are 366 possible birthdays, including February 29). However, 99% probability is reached with just 57 people, and 50% probability with 23 people. These conclusions are based on the assumption that each day of the year (except February 29) is equally probable for a birthday. The mathematics behind this problem led to a well-known cryptographic attack called the birthday attack, which uses this probabilistic model to reduce the complexity of cracking a hash function.
Data
Burimi Punë e juaja
Autori Guillaume Jacquenot
SVG genesis
InfoField
 The source code of this SVG is invalid due to 243 errors.
 This W3C-invalid plot was created with Matplotlib.
Kodi burimor
InfoField

Python code

# -*- coding: utf-8 -*-
#
# Script to generate in English and French, graphs for the
# birthday problem.
# More precisely, it generates two SVG files representing the
# probability of no match of two identical birthday one the same
# wrt the number of person in the considered group.
#
# **************************************************************
# http://en.wikipedia.org/wiki/Birthday_problem
# From Wikipedia, the free encyclopedia:
# In probability theory, the birthday problem or birthday
# paradox concerns the probability that, in a set of n
# randomly chosen people, some pair of them will have the
# same birthday. By the pigeonhole principle, the probability
# reaches 100% when the number of people reaches 367
# (since there are 366 possible birthdays, including February
# 29). However, 99% probability is reached with just 57 people,
# and 50% probability with 23 people. These conclusions are
# based on the assumption that each day of the year (except
# February 29) is equally probable for a birthday.
#
# The mathematics behind this problem led to a well-known
# cryptographic attack called the birthday attack, which
# uses this probabilistic model to reduce the complexity
# of cracking a hash function.
#
# Text under the
# Creative Commons Attribution-ShareAlike License
# **************************************************************
#
# Implementation:
# To ensure numerical accuracy, one evaluates the log10 of the
# probabibity of no match. This allows to converts the
# probability formula from a product formula to a sum formula.
#
#
# Guillaume Jacquenot
# 2013/03/10

import matplotlib.pyplot as plt
from matplotlib import rc
rc('font',**{'family':'serif','serif':['Palatino'],'size':14})
rc('text', usetex=True)
import numpy as np

def BirthdaymatchComputationLog10():
    '''
        This function evaluates the log10 probability of no
        match for the birthday paradox.
        This ensures no approximation on the result.
        $\log _{10} \left( {\bar p(n)} \right) =
         \sum\limits_{i = 365 + 1 - n}^{365}
         {\log _{10} \left( i \right)}
         - n\log _{10} \left( {365} \right)$
    '''
    n=np.arange(1,365)
    nR=np.arange(365,1,-1)
    p=np.cumsum(np.log10(nR))-n*np.log10(365)
    return n,p

def BirthdaymatchGenerateTitle(logTitle=False):
    if logTitle:
        title='$\\log _{10} \\left( {\\bar p(n)} \\right)\
               = \\sum\\limits_{i = 365 + 1 - n}^{365}\
                 {\\log _{10} \\left( i \\right)}\
                 - n\\log _{10} \\left( {365} \\right)$'
    else:
        title='$\\bar p(n) = \\frac{365!}{365^n\
                    \\left( {365 - n} \\right)!}$'
    return title

def Birthdaymatch(\
        labels={'xlabel':'Number of people',\
                'ylabel':'Probability of no match',\
                'title':'Birthday paradox'},\
        outputFilename = r'Birthdaymatch.svg'):
    n,p = BirthdaymatchComputationLog10()
    fig, ax = plt.subplots()
    plt.plot(n,p,c='k', linestyle='-')
    plt.grid(True, ls='-', c='#a0a0a0')
    plt.xlabel(labels['xlabel'])
    plt.ylabel(labels['ylabel'])
    plt.title(labels['title']+' - '+BirthdaymatchGenerateTitle())
    fig.canvas.draw()
    labels = [item.get_text() for item in ax.get_yticklabels()]
    labels = [label[1:] if label.startswith('$') else label for label in labels]
    labels = [label[0:-1] if label.endswith('$') else label for label in labels]
    labels = ['$10^{'+label+'}$' for label in labels]
    ax.set_yticklabels(labels)
    plt.savefig(outputFilename)

Birthdaymatch()
Birthdaymatch(\
    labels={'xlabel':u"Nombre de personnes",\
            'ylabel':u"Probabilit\\'e de non correspondance",\
            'title':u"Paradoxe des anniversaires"},\
    outputFilename = r'Birthdaymatch_FR.svg')

Licencim

Unë, krijuesi i kësaj pune, e publikoj këtu në bazë të licensës në vijim:
w:sq:Creative Commons
atribuim share alike
Je i lirë të:
  • ta shpërndani – ta kopjoni, rishpërndani dhe përcillni punën
  • t’i bëni “remix” – të përshtatni punën
Sipas kushteve të mëposhtme:
  • atribuim – Duhet t’i jepni meritat e duhura, të siguroni një lidhje për tek licenca dhe të tregoni nëse janë bërë ndryshime. Këtë mund ta bëni në ndonjë mënyrë të arsyeshme, por jo në ndonjë mënyrë që sugjeron se licencuesi ju del zot juve apo përdorimit tuaj.
  • share alike – Nëse bëni një “remix”, e shndërroni, ose ndërtoni duke u bazuar te materiali, duhet t’i shpërndani kontributet tuaja sipas të njëjtës licencë ose një të tille të përputhshme me origjinalen.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

përshkruan

10 mars 2013

image/svg+xml

checksum anglisht

68b9c96e2a245296ec08bbfe7963536985e6cf9e

data size anglisht

297.936 Bajti

540 pixel

720 pixel

Historiku i skedarit

Kliko mbi një datë/orë për ta parë skedarin siç është shfaqur në atë kohë.

Data/OraMiniaturaPërmasatPërdoruesiKoment
e tanishme10 mars 2013 20:39Miniaturë për versionin duke filluar nga 10 mars 2013 20:39720 × 540 (291 KB)wikimediacommons>GjacquenotUser created page with UploadWizard

faqe lidhet tek kjo skedë: