Hapësira e rezultateve
Në teorinë e probabilitetit, hapësira e rezultateve (e quajtur edhe hapësira e përshkrimit të kampionimit ose [1] hapësira e mundësive[2] [3] ) e një eksperimenti ose provash të rastit është grupi i të gjitha rezultateve ose rezultateve të mundshme të atij eksperimenti. [4] Një hapësirë rezultatesh zakonisht shënohet duke përdorur shënimin e bashkësisë, dhe rezultatet e mundshme të renditura, ose pikat e kampionimit, [5] renditen si elementë në bashësi. Është e zakonshme t'i referohemi një hapësire rezultatesh me etiketat S, Ω, ose U (për " bashkësi universale "). Elementet e një hapësire rezultatesh mund të jenë numra, fjalë, shkronja ose simbole. Ato gjithashtu mund të jenë të fundme, të pafundme të numërueshme ose të pafundësisht të numërueshme . [6]
Një nëngrup i hapësirës së rezultateve është një ngjarje, e shënuar me . Nëse rezultati i një eksperimenti përfshihet në , pastaj ngjarje ka ndodhur. [7]
Për shembull, nëse eksperimenti është hedhja e një monedhe të vetme, hapësira e rezultatit është bashkësia , ku rezultati do të thotë se monedha është kokë dhe rezultati do të thotë se monedha është pil. [8] Ngjarjet e mundshme janë , , , dhe . Për hedhjen e dy monedhave, hapësira e rezultateve është , ku është rezultati nëse të dyja monedhat janë koka, nëse monedha e parë është kokë dhe e dyta është pil, nëse monedha e parë është kokë dhe e dyta është pil, dhe nëse të dyja monedhat janë pil. [9] Ngjarja që të paktën një nga monedhat është kokë jepet nga .
Për hedhjen e një zari të vetëm me gjashtë anë një herë, ku rezultati i interesit është numri i faqeve të kthyera lart, hapësira e mostrës është . [10]
Një hapësirë rezultatesh joboshe e përcaktuar mirë është një nga tre përbërëset në një model probabilistik (një hapësirë probabiliteti ). Dy elementët e tjerë bazë janë: një grup i mirëpërcaktuar i ngjarjeve të mundshme (një hapësirë ngjarjesh), që zakonisht është bashkësia fuqi e nëse është diskrete ose një <span typeof="mw:Entity" id="mwSw">σ</span> -algjebër mbi nëse është e vazhdueshme, dhe një probabilitet i caktuar për çdo ngjarje (një funksion matës probabiliteti ). [11]
Hapësira e mostrës mund të përfaqësohet nga ana pamore nga një drejtkëndësh, me rezultatet e hapësirës së rezultateve të shënuara me pika brenda drejtkëndëshit. Ngjarjet mund të përfaqësohen nga ovale, ku pikat e mbyllura brenda ovales përbëjnë ngjarjen. [12]
Kushtet e një hapësire rezultatesh
Një grup me rezultate (dmth ) duhet të plotësojë disa kushte për të qenë një hapësirë rezultatesh: [13]
- Rezultatet duhet të jenë ndërsjellazi përjashtuese, dmth nëse ndodh, pastaj asnjë tjetër nuk do të zhvillohet, . [6]
- Rezultatet duhet të jenë bashkarisht shteruese, dmth në çdo eksperiment (ose provë të rastësishme) gjithmonë do të ketë ndonjë rezultat për . [6]
- Hapësira e mostrës ( ) duhet të ketë granularitetin e duhur në varësi të asaj që i intereson eksperimentuesit. Informacioni i parëndësishëm duhet të hiqet nga hapësira e mostrës dhe duhet zgjedhur abstraksioni i duhur.